Nanoparticles influence droplet formation in a T-shaped microfluidic

نویسنده

  • Ruijin Wang
چکیده

Droplet formation in the presence of nanoparticles was studied in a T-shaped microfluidic device numerically. Nanoparticles in continuous phase did not influence droplet formation dynamics obviously. Contrarily, the presence of nanoparticles in dispersed phase will influence evidently droplet formation dynamics, likely reasons are the accumulation of nanoparticles at the liquid-liquid interface leading to the variation of interfacial tension and the anisotropy of nanoparticles' movement at interface. The droplet size decreases almost linearly with increasing of the volume fraction of nanoparticles in dispersed phase when the volume fraction of nanoparticles not exceeding a critical value (about 0.2 %), because very high concentration of nanoparticles results in particle aggregation so as to not decrease interfacial tension so obviously any more. A complicated mechanism of temperature influences on droplet formation may exist combining the variations of effective viscosity and interfacial tension. Discussions on microscopic mechanism of droplet formation in the presence of nanoparticles were carried out.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

Fluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells

Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...

متن کامل

SHORT COMMUNICATION Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping

In this work, we have systematically analyzed the scaling law of droplet formation by cross-flow shear method in T-junction microfluidic devices. The droplet formation mechanisms can be distinguished by the capillary number for the continuous phase (Cac), which are the squeezing regime (Cac \ 0.002), dripping regime (0.01 \ Cac \ 0.3), and the transient regime (0.002 \ Cac\ 0.01). Three corresp...

متن کامل

Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics

Interfacial tension and viscosity of a liquid play an important role in microfluidic systems. In this study, temperature dependence of surface tension, interfacial tension and viscosity of a nanofluid are investigated for its applicability in droplet-based microfluidics. Experimental results show that nanofluid having TiO2 nanoparticles of 15 nm diameters in deionized water exhibit substantiall...

متن کامل

Investigation of droplet coalescence in nanoparticle suspensions by a microfluidic collision experiment.

Understanding the phenomenon of droplet coalescence in nanoparticle suspensions is extremely important for the preparation of Pickering emulsions. A microfluidic platform, which can provide compulsive droplet collisions, was developed to imitate the droplet coalescence process in the early stages of emulsification. Microscope videos showed the variations in the droplet coalescence percentage, d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2013